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ABSTRACT
Game development has a long and proud history.  You may have found the SAS menu Solutions/
Accessories/Games an interesting diversion. Can you guess who wrote “Dr. G's Blackjack”?  I thought it was
time to breathe some new life into this venerable category.  This paper discusses design and implementation
considerations encountered while building the popular game TETRIS in SAS/AF.

INTRODUCTION
TETRIS really needs no introduction.  It is one of the most popular of all puzzle style video games and has
many active fans.  Have you considered that making your own version of the game in SAS/AF is almost as
much fun as playing it?  There are several questions that need to be answered.  What are the pieces? How are
they organized? How do they move? Can I make sounds? How do I keep score?

GAME PIECES
There are seven distinct shapes that can be made from four connected blocks.  These are the game pieces.

GAME PLAY
The pieces fall one at a time from the top. The player moves and rotates the piece until it hits bottom or another
piece.  When a row of blocks is made, three things happen.  The score is updated, the row is removed and the
blocks above the row drop down. The game field is 10 blocks across and 20 blocks high.

MOVEMENT
Pieces can be moved left and right, or dropped straight down.  When a piece is dropped the player has a small
amount of time during which he can tweak it left or right (if there is space). The keys for moving are based on
a T pattern in the keypad keys.

• 4 – move left
• 5 – rotate clockwise
• 6 – move right
• 2 – drop
• D also drops, Q is for quitters.
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GAME PIECES - BLOCKS
The pieces look cool because the blocks they are made from have a border and a gradient fill.  The upper left
part of the border is a lighter shade of the block color, and the lower right part is a darker shade.  The gradient
is made by drawing 45 degree lines across the face.  The color of the lines vary linearly from a light to dark
shade of the block color.

The fill progression becomes clear when using exaggerated shading factors and zooming in on a face having a
small number of pixels.

Blank face Partially filled Gradient filled

The program CreateBlocks.source uses DSGI to create seven gradient-filled block images, saved to files
named A.GIF to G.GIF.  Each image has a color corresponding to a game piece.  The images are 30 by 30
pixels and are the basis of each piece.

The program also creates a grid image for the game field. The image is
301 pixels wide and 601 pixels high.  There is an extra pixel so that
when the blocks of a piece are positioned, the left and top edges are
adjacent to a grid line.

Another program LoadBocks.scl reads the gif files and saves them
as IMAGE catalog entries.  The Image Data Model class is used to
perform this task.  Methods _readFilePath and _writeCatalog do all the
necessary conversions.
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init:
  in_path = pathname ('WORK');
  sn = screenname();
  out_cat = scan(sn,1,'.')
  || '.' || scan(sn,2,'.');

  declare sashelp.fsp.imgdat img
  = _new_ sashelp.fsp.imgdat ();

  do i = 0 to 6;
   name = byte(rank('a')+i)||'.gif';
   link import;
  end;

  name = 'grid.gif'; link import;

  img._term();
return;

import:
  file = in_path || '\' || name;
  ent  = out_cat || '.' || name;

  img._readFilepath (file);
  img._writeCatalog (ent);

  declare list attr = {};

  img._getAttributes (attr);

  w = getNitemN (attr,'width');
  h = getNitemN (attr,'height');

  put name= w= h=;

  attr = dellist (attr);
return;



GAME LAYOUT
A SAS/AF Frame is constructed to contain the objects that comprise the game: a game field grid, controls for
reporting the score, the level and the number of blocks remaining, a “game over” notice, text labels for simple
instructions and an all important Text Entry Control for capturing keypresses.  The game pieces are
dynamically instantiated and manipulated at runtime.

TIMERED SIMULATION
Hold it, timeout, wait a second!  On first glance, SAS/AF does not appear to have a Timer class, nor any
functions to perform time sliced or interrupt driven programming.  How will time driven events occur?

One might be tempted to consider the crudest form of waiting, the spin loop

later = datetime() + 20/1000; * wait 20 milliseconds;
do until (datetime() > later);
end;

Spin loops are severe no-no's.  They peg CPU usage at 100%, and are unyielding, which means the program
cannot process a click or keypress while the loop is running.  However, there are two very important functions
upon which the entire game is based.

SLEEP (N, 0.001)
“The CALL SLEEP routine suspends the execution of a program that invokes this call routine for a period of
time that you specify”i  Sleep is an operating system friendly function.  While the SAS session is suspended it
yields to the operating system; no CPU usage will occur, there will be no response to mouse clicks and
keystrokes.

EVENT ()
“Reports whether a pending event has occurred...An event can be a mouse button press or a keyboard key
press”ii  Event returns 1 when an event needs to be processed by the SAS session manager.  In a code block
that is looping, 1 is a signal that the loop should end and let the AF event handling system proceed.

  Animate: method return=num;
    * return -1 if game over, 1 if piece stopped, 0 if event occurred;
    declare num dt=datetime() oldy ;

    do until ( event() );  * wait for user action;

      do while (dt<timeout and not event()); * wait for timered action;
        sleep (10,0.001);  * time-slice;
        dt = datetime();
      end;

      * -1 indicates timered action resulted in game over state;
      if field.gameover then return -1;

      if (dt >= timeout) then do; * timered actions;
        * timeout occurred, drop the piece a little;
        oldy = y; down (gravity);
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        declare Wave click = _self_.field.clicks[row]; click.play(); * bleep;

        if oldy = y then return 1;  * piece did not go down since last timeout;

        timeout = computeNextTimeOut (dt, field.level);
      end;
    end;

    return 0;
  endmethod;

Sleep and Event are used in combination to make a piece drop and play a sound while waiting for a keypress.
This is not interrupt driven programming, but rather a form of time sliced animation.  10 milliseconds (ms) was
chosen as the largest acceptable duration in which the SAS session would be totally unresponsive.  Every 10ms
a check is made for a pending event and if so, the Animate routine exits and lets AF event handling proceed
normally.  However, if after 10ms no event has occurred, the loop sleeps again... until the current time is at or
beyond the timeout.  When a timeout occurs, then the animation actions happen; the piece is moved down, a
sound is played and the next timeout is computed.

Note: Animate is a method for a piece.  If a piece does not go down when so instructed, it means the piece
has hit bottom or is on top of another piece; a new piece should start at the top.

WAIT
So what is calling Animate?  This is the trickiest part of the application. The Text Entry Control on the frame
is named kbd.  Kbd is customized during frame INIT as follows:

sn = screenname();
cat = scan(sn,1,'.') || '.' || scan(sn,2,'.') || '.';
kbd.keyFeedback = 'Yes';
kbd._setInstanceMethod ('_onKey', cat||'Playmethods', 'onkey');

The SCL method onkey in the Playmethods catalog entry will run whenever a key is pressed while kbd has
focus.  The method has a section to dispatch behavior actions in accordance to the rules of play.

onkey:
method; * kbd keypress handler;
  ...
  select (upcase(_self_.text)); * handle action request, aka behavior dispatch;
    when ('4') piece.left();
    when ('5') piece.rotate();
    when ('6') piece.right();
    when ('2') piece.drop();
    when ('D') piece.drop();
    when ('Q') field.gameover = 1; otherwise ;
  end;

  * reset text so after next keypress text will have only one char;
  _self_.text = '';
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wait: * top of wait loop;
  rc = piece.animate();
  if rc then do;
    if rc > 0 then piece.lock();
    if field.gameover then do; ... return; end;

    piece._term();

    a2g = byte(41x+ranuni(0)*7);
    piece = _new_ Piece(field,a2g);
    ...
    goto wait;
  end;
endmethod;

A wait loop is entered after responding to a keypress with an appropriate action.  The statement
rc=piece.animate() causes the application to enter the timered simulation state.  The piece will drop a
little and bleep until animate returns:

• -1 when the game is over,
• 1 when a new piece is needed, or
• 0 when an event is pending.

If rc is 0, the wait loop ends, and the onKey method returns.  Now, here's the trick.  The only event pending
that impacts game play is a keypress in the kbd Text Entry, which causes onKey to reenter (via the SAS/AF
executor event handling system).

WAVE TO THE SPEAKER
No, no, don't wave to me.  Send the bit sample of a wave form to the platform's audio output system.  This is
only valid on Windows platforms.  A moduleN function is used to invoke the Windows API routine
PlaySound

WAVE CLASS
The Wave class accepts three parameters for computing the wave form data of a sound effect: duration,
frequency and volume.  A character variable is used as a data buffer.  The wave data conforms to the RIFF
media format and is computed at instantiation

  wave:
  public method dur:num freq:num vol:num;
    ...
    buffer = ... * 44 byte RIFF content header * ...

    theta = 0;
    ix = 45;

    do i = 1 to samplecount;
      level = floor (maxlevel * sin(theta));
      theta + thetaStep;

5



      thetaStep + 0.0003;

      substr (buffer,ix,2) = put(level,ib2.);

      ix + 2;
    end;
  endmethod;

The small rise in theta step gives the sound a little texture. Play() uses the Windows API function PlaySound
to output the sound.  Play() is called from inside the piece Wait() loop.

Play:method;
rc = modulen ('PlaySoundA', buffer, 0, &SND_ASYNC + &SND_MEMORY + &SND_NOSTOP);

The SASCBTBL fileref which describes how SAS interfaces with DLL routines, is prepared in the frame
INIT.

PIECE CLASS
The Piece Class is another core of the game; the piece arranges blocks into the appropriate shape and
implements behaviors such as down, left, right, rotate, drop, animate and lock.  Additionally, collision
detection is performed in the class whenever a motion-related behavior is attempted.

BLOCK ARRANGEMENT
Arrays are used to specify the block layout of each piece in each of its rotations.  The piece class adjusts itself
to be any of the seven shapes.  Note: The intialValue of piece A's layout shown here has been pivoted to
reduce space.

private num A [ 4, 4, 4 ] / ( initialValue =
  { ., ., 1, .     , ., ., ., .     , ., ., 4, .     , ., ., ., .
  , ., ., 2, .     , ., ., ., .     , ., ., 3, .     , ., ., ., .
  , ., ., 3, .     , 4, 3, 2, 1     , ., ., 2, .     , 1, 2, 3, 4
  , ., ., 4, .     , ., ., ., .     , ., ., 1, .     , ., ., ., .  };

Dimension one is for the four states of rotation, dimension two and three define the two dimensional layout of
the blocks in the piece.

block = Layout [ state, row, col ]

When a piece is instantiated, an inverse mapping is determined to simplify location lookup.

Location [ state, block, 1 ] = row
Location [ state, block, 2 ] = col

Four Image Viewer Controls, block1 - block4, are created and populated with the correct colored block image,
and positioned according to the location array.  The visual effect is a piece.

SURPRISE BLOCKS
Games are more exciting when they have secrets and surprises.  The SAS icon
image is randomly used as a block's image.  A scoring bonus occurs when the
player eliminates this block.
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POSITIONING
When the X pixel position of a piece is changed, new horizontal positions of the Image Viewers are computed
in the attributes setcam  method.  Note the use of the location[] array.

  /*
   * The pieces horizontal position is to be set
   * errorMessage is an attribute of all Objects, and will be
   * non-blank if an attempt is made to place and imageviewer (block)
   * outside allowed bounds.
   */

  private num incamX / ( initialValue = 0 );  * semaphore to prevent reentry;
  setcamX:
  protected method x:num return=num;
    if errorMessage ne '' then return 1;
    if incamX then return 0;
    incamX = 1;

    declare num blockno;
    do blockno = 1 to 4;
      block[blockno].horizontalPosition = x + location[state,blockno,2] * side;
    end;

    col = floor ( ( x-1 - field.horizontalPosition ) / side ) + 1;

    incamX = 0;
    return 0;
  endmethod;

A similar method is coded for the Y pixel position. A piece can also be positioned according to row and
column.  This coordinate system is based on block size.

x = field.horizontalPosition + (col-1) * side + 1;

COLLISION DETECTION
The collision detection logic is as follows; if, after the piece is moved, would any of the corners of any of the
blocks of the piece reside in a cell that is occupied by a block previously locked?  Note the use of field.blocks,
an array that tracks which blocks have been previously locked.  

  down:
  method dy:input:num;
    declare num i trow brow lcol rcol bblocked blocked ;

    do i = 1 to 4;
      trow = blockRowOf ( block[i].verticalPosition + dy );
      brow = blockRowOf ( block[i].verticalPosition + dy + side-1 );
      lcol = blockColOf ( block[i].horizontalPosition );
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      rcol = blockColOf ( block[i].horizontalPosition + side-1 );

      bblocked = (brow > field.getNumberOfRows());

      if not bblocked then do;
        blocked = 0;
        if brow > 0 then do;
          blocked = blocked or _self_.field.blocks[brow,lcol];
          blocked = blocked or _self_.field.blocks[brow,rcol];
        end;
        if trow > 0 then do;
          blocked = blocked or _self_.field.blocks[trow,lcol];
          blocked = blocked or _self_.field.blocks[trow,rcol];
        end;
      end;
      else
        blocked = 1;

      if blocked then do;  
        * requested dy is too much, what is minimum that would work?;
        dy = round(topOfRow (brow-1) - block[i].verticalPosition,1);
        if dy < 0 then do;
          field.gameover = 1;
          return;
        end;
      end;
    end;

    y + dy;
  endmethod;

Similar methods are coded for left, right and rotate.

LOCKING BLOCKS
When a piece cannot  move, the blocks (the Image Viewers) that compose the piece are locked into the field
for scoring considerations and future collision detection.

  lock:
  public method;
    declare num i r c rr cc rowsCleared;
    declare Object b;

    do i = 1 to 4; * determine if game over should occur;
      r = row + location[state,i,1] ;
      c = col + location[state,i,2] ;
      * can not lock a block above the top game field row, game over;
      if r < 1 then do; field.gameover = 1; return; end;
      * can not lock a block where one already locked, game over;
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      if _self_.field.blocks[r,c] then do; field.gameover = 1; return; end;
    end;

    do i = 1 to 4; * lock the blocks of the piece;
      r = row + location[state,i,1] ;
      c = col + location[state,i,2] ;
      _self_.field.blocks[r,c] = block[i];  * save Image Viewer reference;
    end;

CLEARING ROWS
After the blocks are locked, each row of the game field needs to be examined.  If a row has a block in each
column, then the row has to be eliminated.

    declare num nr = field.getNumberOfRows();
    declare num nc = field.getNumberOfColumns ();
    declare num advancer = 0;

    rowsCleared = 0; * for scoring;

    do r = nr to 1 by -1;
      do c = 1 to nc ; if not _self_.field.blocks[r,c] then leave; end;
      if c <= nc then leave;  * row is not filled;

      * row is filled, hide the blocks of the filled row, count bonus blocks;
      do c = 1 to nc;
        _self_.field.blocks[r,c].visible = 'No';
        * getting a bonus block makes the player score as if
        * on a  higher level;
        if index (_self_.field.blocks[r,c].image, 'SASHELP') then advancer+1;
      end; refresh; sleep (175,0.001);

      * free the Image Viewers and clear the references to them;
      do c = 1 to nc; 
        b = _self_.field.blocks[r,c]; b._term(); _self_.field.blocks[r,c] = 0;
      end;

      * move the blocks above the row down one row;
      do rr = r-1 to 1 by -1;  do cc = 1 to nc;
        if _self_.field.blocks[rr,cc] then
        _self_.field.blocks[rr,cc].verticalPosition + side;
        b = _self_.field.blocks[rr,cc] ;
        _self_.field.blocks[rr+1,cc] = b;
      end;  end;

      * clear the topmost row;
      do cc = 1 to nc; _self_.field.blocks[1,cc] = 0; end;

      rowsCleared + 1; r + 1;
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    end;

SCORING
The points scored depends on how many rows were cleared by locking a piece.  The more rows cleared the
higher the multiplier factor.

* per http://folk.uio.no/perjp/java/;
declare num factor [0:4] = (0,40,100,300,1200);

field.score + factor[rowsCleared] * (field.level+1+advancer);

CONCLUSION
Programming a game requires a range of skills and the ability to blend a variety of objects.  SAS/AF is capable
of producing enjoyable game play that looks and sounds nice.  Creative use of sleep and event allow an SCL
programmer to implement self-running simulations.
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SAMPLE APPLICATION
A SAS transport file containing the Tetris application, with source code, can be found at the authors website. Visit
http://www.devenezia.com and follow the link to Papers.

Tetris can also be installed by visiting http://www.devenezia.com/downloads/sas/af?topic=27  The game will play
with only Base SAS installed, you do not need SAS/AF installed. 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries.  ® indicates USA registration.
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